<u>2D geometry basics: in principle</u>

- 1. Points and vectors in the Euclidean plane:
 - (a) What do we mean by *points* and *vectors* in the plane?In what ways are these concepts similar? In what ways are they distinct?
 - (b) How do we conventionally denote points and vectors in writing?
 - (c) Discuss the notion of the *weight* of points and vectors.
 - (d) What is the fundamental operation that can be performed on vectors, and how is this restricted when we apply it to points?
 - (e) What are the key relationships between points and vectors?
- 2. Suppose that \vec{v} and \vec{w} are vectors in the plane.
 - (a) Give the geometric meaning of the *dot product* $\vec{v} \cdot \vec{w}$; what does it allow us to compute about a vector or pair of vectors?
 - (b) Give the geometric meaning of the *scalar cross-product* $(\vec{v} \times \vec{w}) \cdot \hat{k}$; what does this allow us to compute?
- 3. Cartesian coordinates:
 - (a) Describe the Cartesian plane, including the meaning of its *origin* and its x- and y-axes.What is unnatural about imposing such coordinates on the plane? Why is it nonetheless useful?
 - (b) How do we represent *points* and *vectors* using Cartesian coordinates? What should we be extremely careful about when doing so?
 - (c) How can our basic operations of [affine/linear] combinations be performed in Cartesian coordinates?
 - (d) How can we compute the *dot product* and *scalar cross-product* of two vectors in Cartesian coordinates?
- 4. How can we use *affine coordinates* to track "weights" of combinations of points and vectors?

...and in practice

- 5. Find the "weights" of the following combinations of points and vectors, and classify each as a *vector*, a *point*, or *neither*:
 - (a) p + q + r (b) $\frac{1}{3}p + \frac{1}{3}q + \frac{1}{3}r$ (c) $p + \vec{v}$ (d) $q + 3\vec{v} \vec{w}$ (e) $\vec{r} - 5\vec{v} + 4\vec{w}$ (f) p + q - r (g) $p - \frac{1}{2}q$
- 6. Find the lengths of each of the following vectors, and for each pair of them, determine whether they form an *acute*, *obtuse*, or *right* angle:
 - (a) $\langle 2, -1 \rangle$ (b) $\langle 3, 4 \rangle$ (c) $\langle 1, 2 \rangle$ (d) $\langle -3, 0 \rangle$
- 7. For each of the pairs of vectors below, find the area of the triangle they span, and determine whether the smaller angle from the first vector to the second goes *counterclockwise* or *clockwise*:
 - (a) $\langle 1, 3 \rangle$ and $\langle 3, 1 \rangle$ (b) $\langle 2, 0 \rangle$ and $\langle -1, 1 \rangle$
- Suppose that p = (2,1), q = (0,3), r = (0,0), v = ⟨-1,-1⟩, w = ⟨4,0⟩, and r = ⟨0,0⟩.
 Write each of these in affine coordinates, and use this to compute the affine coordinates for each of the combinations from problem 5.